Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Bis(2,3-dimethylbutane-2,3-diamine)nickel(II) dinitrate monohydrate

Shen-Xin Li,* Li-Ke Zou, Bin Xie, Jun Wang and Jian-Zhang Li

School of Chemistry \& Pharmaceutical Engineering, Sichuan University of Science \& Engineering, Zigong, Sichuan 643000, People's Republic of China Correspondence e-mail: zoulike@yahoo.com.cn

Received 11 March 2009; accepted 30 March 2009

Key indicators: single-crystal X-ray study; $T=292 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$;
R factor $=0.054 ; w R$ factor $=0.165$; data-to-parameter ratio $=14.7$.

In the title compound, $\left[\mathrm{Ni}\left(\mathrm{C}_{6} \mathrm{H}_{16} \mathrm{~N}_{2}\right)_{2}\right]\left(\mathrm{NO}_{3}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$, the bis(2,3-dimethylbutane-2,3-diamine)nickel(II) complex cation possesses a relatively undistorted square-planar geometry about the Ni atom, which lies on an inversion centre and is coordinated by four N atoms from two symmetry-related 2,3-diamino-2,3-dimethylbutane (tmen) ligands. The amine groups are $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonded to the nitrate anions, which are, in turn, linked by interstitial water molecules lying on a twofold axis. The infinite zigzag chains thus formed along [001] are further connected to each other by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds towards the water molecules, forming layers of two-dimensional hydrogen-bonded arrays.

Related literature

For general background, see: Cheng et al. (2002). For related structures, see: Aranda et al. (1977); Beltran et al. (1978). For bond-length data, see Allen et al. (1987).

Experimental

Crystal data

$\left[\mathrm{Ni}\left(\mathrm{C}_{6} \mathrm{H}_{16} \mathrm{~N}_{2}\right)_{2}\right]\left(\mathrm{NO}_{3}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	$V=2057.4(12) \AA^{3}$
$M_{r}=433.14$	$Z=4$
Monoclinic, $C 2 / c$	Mo $K \alpha$ radiation
$a=21.788(3) \AA$	$\mu=0.99 \mathrm{~mm}^{-1}$
$b=7.892(3) \AA$	$T=292 \mathrm{~K}$
$c=13.997(4) \AA$	$0.50 \times 0.46 \times 0.40 \mathrm{~mm}$
$\beta=121.26(3)^{\circ}$	

Data collection

Enraf-Nonius CAD-4
diffractometer
Absorption correction: spherical
(PLATON; Spek, 2009)
$T_{\text {min }}=0.638, T_{\text {max }}=0.694$
2099 measured reflections

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.054$
$w R\left(F^{2}\right)=0.165$
$S=1.09$
1895 reflections
129 parameters
1 restraint

1895 independent reflections 1314 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.020$
3 standard reflections every 100 reflections intensity decay: 0.8%

H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\text {max }}=0.96 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.65 \mathrm{e}^{\AA^{-3}}$

Table 1
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{O}^{\mathrm{i}}$	0.90	2.17	$3.048(7)$	166
$\mathrm{~N} 1-\mathrm{H} 1 B \cdots W^{\text {ji }}$	0.90	2.23	$3.120(5)$	170
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{O}^{\mathrm{iii}}$	0.90	2.09	$2.936(7)$	157
$\mathrm{O} W-\mathrm{H} W 1 \cdots \mathrm{O} 1$	$0.91(11)$	$1.95(11)$	$2.824(6)$	$160(12)$
OW-HW1 $\cdots \mathrm{O} 2$	$0.91(11)$	$2.57(11)$	$3.106(8)$	$118(9)$
Symmetry codes: (i) $x, y-1, z ;$ (ii) $-x+1,-y,-z ;$ (iii) $-x+1,-y+1,-z$				

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg \& Putz, 2005); software used to prepare material for publication: SHELXL97.

Financial assistance from the Education Department of Sichuan Province, People’s Republic of China (Project Nos. 2005 A146 and 07ZA161) is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2188).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Aranda, R. A., Fernandez, J., Beltran, F. G. \& larena, A. (1977). Cryst. Struct. Соттип. 6, 635-638.
Beltran, F. G., Capilla, A. V. \& Aranda, R. A. (1978). Cryst. Struct. Commun. 7, 153-157.
Brandenburg, K. \& Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Cheng, S. Q., Zeng, X. C., Xie, J. Q. \& Li, S. X. (2002). Synth. React. Inorg. Met. Org. Chem. 32, 1419-1432.
Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg,Germany
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supplementary materials

Bis(2,3-dimethylbutane-2,3-diamine)nickel(II) dinitrate monohydrate

S.-X. Li, L.-K. Zou, B. Xie, J. Wang and J.-Z. Li

Comment

The crystal structures of $\left[\mathrm{Ni}(\text { tmen })_{2}\right] \mathrm{Cl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ and $\left[\mathrm{Ni}(\text { tmen })_{2}\right](\text { tca })_{2}$ (where tmen is 2,3-diamino-2,3-dimethylbutane, tca is tricloroacetate) have been described by Aranda et al. (1977) and Beltran et al. (1978) respectively. Our interest into the Ni and Co complexs of tmen is based on their potential use as efficient mimic models of natural enzymes for phosphate hydrolysis (Cheng et al. 2002). In this work the crystal structure of the title molecule $\left[\mathrm{Ni}(\operatorname{tmen})_{2}\right]\left(\mathrm{NO}_{3}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ is reported.

In the title compound, the $\mathrm{Ni}^{\mathrm{II}}$ atom exhibits a relatively undistorted square-planar geometry (Fig.1), which lies on an inversion centre and is coordinated by four N atoms from two tmen ligands, with $\mathrm{Ni}-\mathrm{N}$ interatomic distances of $1.890(3)-1.898(3) \AA$ and $\mathrm{N} — \mathrm{Ni}-\mathrm{N}$ bond angles of $85.56(14)-94.44(14)^{\circ}$. All the other bond lengths and angles in the complex are generally within normal ranges (Allen et al., 1987).

A striking feature of this compound resides in its zigzag chain structure formed through hydrogen bonds, with a solvate water molecule lying on a two fold axis, as depicted in Fig.2. The amine groups are $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding to the nitrate anions which are in turn linked by interstitial water molecules. The zigzag structure is composed of (tmen ligand) $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ (nitrate anion) and (water molecule) $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ (nitrate anion) hydrogen bonds (Table 1). The $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ distances for the hydrogen bonding of the tmen ligand and the nitrate anion range from 2.936 (7) to 3.048 (7) \AA in the chain. Both $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds for the uncoordinated water molecule are 2.824 (6) \AA. The thus formed infinite zigzag chains along [001] are further connected with each other by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds towards the water molecules to form layers of two-dimensional hydrogen bonded arrays, as shown in Fig.3.

Experimental

2,3-Diamino-2,3-dimethylbutane (tmen) $(0.232 \mathrm{~g}, 2 \mathrm{mmol})$ and $\mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.291 \mathrm{~g}, 1 \mathrm{mmol})$ were dissolved in 20 ml distilled water, the solution was filtrated and the filtrate was kept at room temperature for six months after which yellow to green crystals suitable for X-ray diffraction studies were obtained, yield 37%. Selected infrared spectral (KBr) data (cm^{-1}): $v[\mathrm{O}-\mathrm{H}]=3399.9, v[\mathrm{~N}-\mathrm{H}]=3187.1$ and $3093.7, v[\mathrm{~N}-\mathrm{O}]=1384.8, \delta[\mathrm{~N}-\mathrm{H}]=1601.2$.

Refinement

H atoms on C and N atoms were fixed geometrically and constrained to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}=0.96 \AA$ (methyl) and $\mathrm{N}-\mathrm{H}=0.90 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{N})$ or $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$. The water H atoms were determined with difference Fourier syntheses and refined isotropically.

Figures

Fig. 1. A view of the title compound showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 20% probability level. H atoms are represented as small spheres of arbitrary radii. [Symmetry code: (ii) $-x+1,-y,-z$].

Fig. 2. A view of the zigzag chain with hydrogen bonds shown as dashed lines, H atoms on the C atoms have been omitted for the sake of clarity.

Fig. 3. A view of the two-dimensional hydrogen bonded array with hydrogen bonds shown as dashed lines. H atoms on the C atoms have been omitted for the sake of clarity.

Bis(2,3-dimethylbutane-2,3-diamine)nickel(II) dinitrate monohydrate

Crystal data

$$
\begin{array}{ll}
{\left[\mathrm{Ni}\left(\mathrm{C}_{6} \mathrm{H}_{16} \mathrm{~N}_{2}\right)_{2}\right]\left(\mathrm{NO}_{3}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}} & F_{000}=928 \\
M_{r}=433.14 & D_{\mathrm{x}}=1.398 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo Ka radiation } \\
\text { Monoclinic, } C 2 / c & \lambda=0.71073 \AA \\
\text { Hall symbol: -C } 2 \mathrm{yc} & \text { Cell parameters from } 20 \text { reflections } \\
a=21.788(3) \AA & \theta=4.4-7.1^{\circ} \\
b=7.892(3) \AA & \mu=0.99 \mathrm{~mm}^{-1} \\
c=13.997(4) \AA & T=292 \mathrm{~K} \\
\beta=121.26(3)^{\circ} & \text { Block, yellow-green } \\
V=2057.4(12) \AA^{3} & 0.50 \times 0.46 \times 0.40 \mathrm{~mm} \\
Z=4 &
\end{array}
$$

Data collection

Enraf-Nonius CAD-4

diffractometer
Radiation source: fine-focus sealed tube
Monochromator: graphite
$T=292 \mathrm{~K}$
$\omega / 2 \theta$ scans
Absorption correction: for a sphere
(PLATON; Spek, 2009)
$T_{\text {min }}=0.638, T_{\text {max }}=0.694$
2099 measured reflections
1895 independent reflections

$$
R_{\mathrm{int}}=0.020
$$

$\theta_{\text {max }}=25.5^{\circ}$
$\theta_{\text {min }}=2.2^{\circ}$
$h=-26 \rightarrow 22$
$k=-3 \rightarrow 9$
$l=-16 \rightarrow 16$
3 standard reflections
every 100 reflections
intensity decay: 0.8\%

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.054$
$w R\left(F^{2}\right)=0.165$
$S=1.09$
1895 reflections
129 parameters
1 restraint

Secondary atom site location: difference Fourier map
Hydrogen site location: mixed
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0951 P)^{2}+1.294 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=0.96$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.65$ e \AA^{-3}
Extinction correction: SHELXL97 (Sheldrick, 2008),
$\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$

Primary atom site location: structure-invariant direct methods

Extinction coefficient: 0.0084 (13)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Ni1	0.5000	0.0000	0.0000	$0.0472(3)$
N1	$0.57151(17)$	$-0.1127(5)$	$-0.0139(3)$	$0.0616(10)$
H1A	0.5944	-0.1869	0.0428	0.074^{*}
H1B	0.5503	-0.1720	-0.0781	0.074^{*}
N2	$0.56062(17)$	$0.1927(5)$	$0.0399(3)$	$0.0605(9)$
H2A	0.5415	0.2668	-0.0172	0.073^{*}
H2B	0.5629	0.2438	0.0992	0.073^{*}
C1	$0.6937(2)$	$-0.0917(8)$	$0.0195(5)$	$0.0874(17)$
H1C	0.7082	-0.1557	0.0863	0.131^{*}
H1D	0.7311	-0.0134	0.0328	0.131^{*}
H1E	0.6851	-0.1674	-0.0399	0.131^{*}
C2	$0.6254(2)$	$0.0057(6)$	$-0.0131(4)$	$0.0668(12)$
C3	$0.6356(2)$	$0.1470(6)$	$0.0685(4)$	$0.0668(13)$
C4	$0.6736(3)$	$0.3029(7)$	$0.0615(5)$	$0.0790(14)$
H4A	0.7193	0.2710	0.0725	0.119^{*}
H4B	0.6805	0.3822	0.1182	0.119^{*}

H4C	0.6449	0.3543	-0.0108	0.119^{*}
C5	$0.5928(3)$	$0.0831(9)$	$-0.1304(4)$	$0.0931(17)$
H5A	0.5753	-0.0059	-0.1851	0.140^{*}
H5B	0.6288	0.1469	-0.1345	0.140^{*}
H5C	0.5538	0.1566	-0.1448	0.140^{*}
C6	$0.6758(3)$	$0.0776(9)$	$0.1912(4)$	$0.0881(17)$
H6A	0.6539	-0.0264	0.1937	0.132^{*}
H6B	0.6729	0.1594	0.2395	0.132^{*}
H6C	0.7253	0.0574	0.2155	0.132^{*}
O1	$0.6199(3)$	$0.4468(7)$	$0.2673(5)$	$0.1304(19)$
O2	$0.5352(3)$	$0.5668(9)$	$0.1343(6)$	$0.163(3)$
O3	$0.6359(3)$	$0.6686(7)$	$0.1958(5)$	$0.1408(19)$
N3	$0.5972(3)$	$0.5628(7)$	$0.1999(5)$	$0.0856(13)$
OW	0.5000	$0.2793(8)$	0.2500	$0.115(2)$
HW1	$0.540(4)$	$0.342(12)$	$0.271(10)$	$0.26(6)^{*}$

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ni1	$0.0355(4)$	$0.0458(4)$	$0.0616(5)$	$-0.0018(3)$	$0.0261(3)$	$-0.0082(4)$
N1	$0.0446(18)$	$0.061(2)$	$0.085(3)$	$0.0038(16)$	$0.0371(18)$	$-0.0057(19)$
N2	$0.0505(19)$	$0.0500(19)$	$0.085(3)$	$-0.0051(15)$	$0.0379(19)$	$-0.0108(19)$
C1	$0.051(3)$	$0.102(4)$	$0.120(5)$	$0.010(3)$	$0.053(3)$	$-0.003(4)$
C2	$0.047(2)$	$0.081(3)$	$0.080(3)$	$-0.005(2)$	$0.038(2)$	$-0.001(3)$
C3	$0.043(2)$	$0.073(3)$	$0.084(3)$	$-0.010(2)$	$0.033(2)$	$-0.009(3)$
C4	$0.063(3)$	$0.080(3)$	$0.095(4)$	$-0.023(3)$	$0.042(3)$	$-0.001(3)$
C5	$0.087(4)$	$0.125(5)$	$0.071(3)$	$-0.017(4)$	$0.044(3)$	$0.001(4)$
C6	$0.062(3)$	$0.120(5)$	$0.066(3)$	$-0.016(3)$	$0.022(3)$	$0.006(3)$
O1	$0.097(3)$	$0.123(4)$	$0.154(5)$	$0.028(3)$	$0.053(3)$	$0.068(4)$
O2	$0.104(4)$	$0.145(4)$	$0.174(6)$	$0.009(4)$	$0.024(4)$	$0.071(4)$
O3	$0.143(4)$	$0.101(4)$	$0.188(6)$	$-0.010(3)$	$0.093(4)$	$0.025(4)$
N3	$0.087(3)$	$0.061(3)$	$0.117(4)$	$0.012(3)$	$0.059(3)$	$0.000(3)$
OW	$0.151(7)$	$0.076(4)$	$0.142(6)$	0.000	$0.093(6)$	0.000

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{Ni} 1-\mathrm{N} 1$	$1.890(3)$
$\mathrm{Ni} 1 — \mathrm{~N} 1^{\mathrm{i}}$	$1.890(3)$
$\mathrm{Ni} 1-\mathrm{N} 2$	$1.898(3)$
$\mathrm{Ni} 1-\mathrm{N} 2^{\mathrm{i}}$	$1.898(3)$
$\mathrm{N} 1-\mathrm{C} 2$	$1.496(5)$
$\mathrm{N} 1-\mathrm{H} 1 \mathrm{~A}$	0.9000
$\mathrm{~N} 1-\mathrm{H} 1 \mathrm{~B}$	0.9000
$\mathrm{~N} 2-\mathrm{C} 3$	$1.510(5)$
$\mathrm{N} 2-\mathrm{H} 2 \mathrm{~A}$	0.9000
$\mathrm{~N} 2-\mathrm{H} 2 \mathrm{~B}$	0.9000
$\mathrm{C} 1-\mathrm{C} 2$	$1.520(6)$
$\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	0.9600

sup-4

supplementary materials

C1-H1D	0.9600
C1-H1E	0.9600
C2-C3	1.528 (7)
C2-C5	1.537 (7)
N1-Ni1-N1 ${ }^{\text {i }}$	180.0
N1-Ni1-N2	85.56 (14)
$\mathrm{N} 1^{\mathrm{i}}$ - $\mathrm{Ni} 11-\mathrm{N} 2$	94.44 (14)
$\mathrm{N} 1-\mathrm{Ni} 1-\mathrm{N} 2^{\text {i }}$	94.44 (14)
$\mathrm{N} 1{ }^{\mathrm{i}}$ - $\mathrm{Ni} 11-\mathrm{N} 2{ }^{\text {i }}$	85.56 (14)
$\mathrm{N} 2-\mathrm{Ni} 1-\mathrm{N} 2^{\text {i }}$	180.0
C2-N1-Ni1	113.0 (3)
C2-N1-H1A	109.0
Ni1-N1-H1A	109.0
C2-N1-H1B	109.0
Ni1-N1-H1B	109.0
H1A-N1-H1B	107.8
C3-N2-Nil	112.2 (3)
$\mathrm{C} 3-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~A}$	109.2
Ni1-N2-H2A	109.2
$\mathrm{C} 3-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~B}$	109.2
$\mathrm{Ni} 1-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~B}$	109.2
$\mathrm{H} 2 \mathrm{~A}-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~B}$	107.9
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5
C2-C1-H1D	109.5
H1C-C1-H1D	109.5
C2-C1-H1E	109.5
$\mathrm{H} 1 \mathrm{C}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{E}$	109.5
H1D-C1-H1E	109.5
N1-C2-C1	109.2 (4)
N1-C2-C3	105.7 (4)
C1-C2-C3	113.9 (4)
N1-C2-C5	108.3 (4)
C1-C2-C5	111.1 (5)
$\mathrm{N} 2-\mathrm{Ni} 1-\mathrm{N} 1-\mathrm{C} 2$	-12.6 (3)
N2 ${ }^{\text {i }}$ - $\mathrm{Ni} 11-\mathrm{N} 1-\mathrm{C} 2$	167.4 (3)
N1-Ni1-N2-C3	-14.8 (3)
N1 ${ }^{\text {i }}$ - $\mathrm{Ni} 11-\mathrm{N} 2-\mathrm{C} 3$	165.2 (3)
$\mathrm{Ni} 1-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 1$	158.7 (4)
$\mathrm{N} 11-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3$	35.8 (4)
Ni1-N1-C2-C5	-80.2 (4)
$\mathrm{Ni} 1-\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 4$	161.1 (3)
Ni1-N2-C3-C2	37.2 (4)
Ni1-N2-C3-C6	-79.8 (4)

$\mathrm{O} 2-\mathrm{N} 3$	1.176 (6)
O3-N3	1.209 (6)
OW-HW1	0.91 (11)
C3-C2-C5	108.4 (4)
N2-C3-C4	110.0 (4)
N2-C3-C2	105.0 (3)
C4-C3-C2	114.7 (4)
N2-C3-C6	106.6 (4)
C4-C3-C6	110.0 (4)
C2-C3-C6	110.2 (4)
C3-C4-H4A	109.5
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	109.5
H4A-C4-H4B	109.5
C3-C4-H4C	109.5
H4A-C4-H4C	109.5
H4B-C4-H4C	109.5
C2-C5-H5A	109.5
C2-C5-H5B	109.5
H5A-C5-H5B	109.5
C2-C5-H5C	109.5
H5A-C5-H5C	109.5
H5B-C5-H5C	109.5
C3-C6-H6A	109.5
C3-C6-H6B	109.5
H6A-C6-H6B	109.5
C3-C6-H6C	109.5
H6A-C6-H6C	109.5
H6B-C6-H6C	109.5
$\mathrm{O} 2-\mathrm{N} 3-\mathrm{O} 3$	119.4 (7)
$\mathrm{O} 2-\mathrm{N} 3-\mathrm{O} 1$	117.7 (6)
O3-N3-O1	122.8 (6)
N1-C2-C3-N2	-44.8 (5)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 2$	-164.7 (4)
C5-C2-C3-N2	71.2 (4)
N1-C2-C3-C4	-165.6 (4)
C1-C2-C3-C4	74.5 (6)
C5-C2-C3-C4	-49.7 (5)
N1-C2-C3-C6	69.7 (4)
C1-C2-C3-C6	-50.2 (5)
C5-C2-C3-C6	-174.4 (4)

Symmetry codes: (i) $-x+1,-y,-z$.

supplementary materials

Hydrogen-bond geometry ($\AA,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 \mathrm{~A} \cdots \mathrm{O}^{\text {ii }}$	0.90	2.17	$3.048(7)$	166
N1—H1B $\cdots \mathrm{OW}^{\mathrm{i}}$	0.90	2.23	$3.120(5)$	170
$\mathrm{~N} 2 — \mathrm{H} 2 \mathrm{~A} \cdots \mathrm{O} 2^{\text {iii }}$	0.90	2.09	$2.936(7)$	157
OW—HW1 $\cdots \mathrm{O} 1$	$0.91(11)$	$1.95(11)$	$2.824(6)$	$160(12)$
OW—HW1 $\cdots \mathrm{O} 2$	$0.91(11)$	$2.57(11)$	$3.106(8)$	$118(9)$
Symmetry codes: (ii) $x, y-1, z ;($ (i) $-x+1,-y,-z ;$ (iii) $-x+1,-y+1,-z$.				

Fig. 1

Fig. 2

Fig. 3

